Chaplin 5 Continuing Functions Let f: A-> R and x, EA (unlike ni Ch. 4) We say that f is containing (cts.) at Xo if YE>0 J S>0 s.t. (+) $f(x) - f(x_0)$ $\langle \varepsilon \rangle \forall x \in V_{\mathcal{F}}(x_0) \cap A$. Two special cases (a) Xo EAIA (xo is an issolate pt. of A). Then f is always its at 26. (because = δ_{070} s.t. $V_{f_0}(x_0) \cap A = singletone \{x_03\}$. (b) XoEANA. Then $f is its at 16 iff \lim_{\chi \to \chi_0} f(x) = f(x)$ ThI. Let not A. Furf: A->IR, G. (i) f is us nt 260 (ii) ¥ € >0 3 8 >0 s. - $(\texttt{XX}) \quad f(A \cap V_{\delta}(x_{0})) \subseteq V_{\varepsilon}(f(x_{0}))$

Th 2 (Sequendrial Criticism for Continuinid).
Let xo EA. For
$$f: A \rightarrow IR \ B$$
.
(1) f is $d_{\overline{a}}$ at χ_{0}
(1) $\int is d_{\overline{a}}$ at χ_{0}
(1) $\int isim f(x_{n}) = f(x_{0})$ whenever $(x_{n}) \leq A$ with $\lim_{n} x_{n} = \chi_{0}$
 $Pf(i) \Rightarrow (ii)$. Let $(\chi_{n}) \leq A$ with $\lim_{n} \chi_{n} = \chi_{0}$. Let $E \neq 0$.
Take $\delta \neq 0$ s.t. (*) holds For χ_{0} , $\delta \neq M \leq A$ s.t.
 $|\chi_{n} - \chi_{0}| < \delta \neq m \geq N$, and it follows form (*) that
 $|f(x_{n}) - f(x_{0})| < \epsilon \neq m \geq N$, other for $\delta \neq \infty$.
(ii) $\Rightarrow (i)$. Suppose (i) folse. Then $\exists E \geq 0$ s.t. each $\delta \geq 0$
fails (*) and u each $\frac{1}{2}$ ($n \in N$) folds $\forall n = M$ of $\delta = M$:
 $\exists x_{n} \in A$ with $|\chi_{h} - \chi_{0}(K, h, hnt) f(\chi_{h}) - f(\chi_{0})| \geq \epsilon$.
Thus $\lim_{n} \chi_{n} = \chi_{0}$ but $f(\chi_{0}) \xrightarrow{1}{2} f(\chi_{0})$.
Examples
(*) Constant functions are d_{σ} : $f(x) = b \neq x \in IR$ say.
Let $\chi_{0}(A := IR$. Thus f is d_{σ} at χ_{0} .
(*) $f(x) = x \forall x \in A := R$. Thus f is d_{σ} at χ_{0} .
 $Pf(x) = x^{\circ} \forall x \in IR$. Thus, $\forall x_{0} \in R$, f is d_{σ} at χ_{0} .
 $Pf(x) = x^{\circ} \forall x \in IR$. Thus, $\forall x_{0} \in R$, f is d_{σ} at χ_{0} .
 $Pf(x) = f(x_{0}) < \epsilon$.

To do this, note that

$$\begin{aligned} \left| \int \mathcal{R}(x) - \int \mathcal{H}(y) \right| &= |\chi - \chi_0| \cdot |\chi + \chi_0| \leq |\chi - \chi_0| \cdot (|\chi - \chi_0| + 2|\chi_0|) \\ &\leq (|+ 2|\chi_0|) |\chi - \chi_0| \leq \mathcal{E} \quad \text{as was wished to show.} \\ &\text{Note. Dow chois of 5 depends on \mathcal{E} as well as χ_0 .

$$\begin{aligned} (\text{eventhagh } \chi_0 \text{ was arbitrary}). \\ (\text{d}) - \mathcal{R}(x) &= |\mathcal{H} \quad \forall \ x \in A := (o, +\infty). \quad \text{Let } \chi_0 \in A \text{ , and } \mathcal{E} > 0 \text{ .} \\ \\ \hline (\text{d}) - \mathcal{R}(x) &= |\mathcal{H} \quad \forall \ x \in A := (o, +\infty). \quad \text{Let } \chi_0 \in A \text{ , and } \mathcal{E} > 0 \text{ .} \\ \hline (\text{d}) - \mathcal{R}(x) &= |\mathcal{H} \quad \forall \ x \in A := (o, +\infty). \quad \text{Let } \chi_0 \in A \text{ , and } \mathcal{E} > 0 \text{ .} \\ \hline (\text{d}) - \mathcal{R}(x) &= |\mathcal{H} \quad \forall \ x \in A := (o, +\infty). \quad \text{Let } \chi_0 \in A \text{ , and } \mathcal{E} > 0 \text{ .} \\ \hline (\text{d}) - \mathcal{R}(x) &= |\mathcal{H} \quad \forall \ x \in A := (o, +\infty). \quad \text{Let } \chi_0 \in A \text{ , and } \mathcal{E} > 0 \text{ .} \\ \hline (\text{d}) - \mathcal{R}(x) &= |\mathcal{H} \quad \forall \ x \in A := (o, +\infty). \quad \text{Let } \chi_0 \in A \text{ , and } \mathcal{E} > 0 \text{ .} \\ \hline (\text{d}) - \mathcal{R}(x) &= |\mathcal{H} \quad \forall \ x \in A := (o, +\infty). \quad \text{Let } \chi_0 \in A \text{ , and } \mathcal{E} > 0 \text{ .} \\ \hline (\text{d}) - \mathcal{R}(x) &= |\mathcal{H} \quad \forall \ x \in A := (o, +\infty). \quad \text{Let } \chi_0 \in A \text{ , and } \mathcal{E} > 0 \text{ .} \\ \hline (\text{d}) - \mathcal{R}(x) &= |\mathcal{H} \quad |\mathcal{H} \mid x \in A := (o, +\infty). \quad \text{Let } \chi_0 \in A \text{ , and } \mathcal{E} > 0 \text{ .} \\ \hline (\text{d}) - \mathcal{R}(x) &= (\chi_0 \mid x) = (\chi$$$$

1.e.

$$|N - k \otimes_{i}| < k \leq 1 (2N - k \otimes_{i}) < 1/2$$
and so

$$N = |2N - N| < 1/2 + 1/2 = 1,$$
which is not possible for a natural no. IV.
Similarly one can show that
(H). $f(x) = \begin{cases} 1 & \forall x > 0 \\ 0 & 2 = 0 \\ -1 & \forall x < 0 \end{cases}$
Then f is not its at 0.
(J). $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{cases}$
(Dividelet Function)
Then f is not its at and $x_0 \in |R|$.
(Same for not its at and $x_0 \in |R|$.
(Same for its in (1)).
(H). Let $A = (0, \infty) + 1$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{cases}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{cases}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{cases}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{cases}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{cases}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{cases}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{cases}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{cases}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{cases}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{cases}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{cases}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{cases}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{cases}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{vmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{vmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{vmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{vmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{vmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{vmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{vmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{vmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{vmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{vmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in Q \\ 0 & \forall x \in |R| Q \end{vmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in |R| Q \end{bmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in |R| Q \end{bmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in |R| Q \end{bmatrix}$
(Hornel) $f(x) = q \in |R| Q \end{bmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in |R| Q \end{bmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in |R| Q \end{bmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in |R| Q \end{bmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in |R| Q \end{bmatrix}$
(Hornel) $f(x) = \begin{cases} 1 & \forall x \in |R| Q \end{bmatrix}$
(Hornel) $f(x) = q$

Where
$$B_{h} := \{x \in V_{h}(x_{0}): 0 \le X = \frac{m}{n} \text{ with } m \in IN \}$$

Note that each B_{n} is finith (as the set of all meappined
is the choice definition is B_{n} is a bounded civilities Fractione ness). Indeed
you can allow the check that
number $J_{h}(x_{0}) \le m$ (Exercise !) (#)
Let ε_{70} . Take $N \in M$ such that $\sqrt{n} \le \varepsilon$.
As $\bigcup_{n=1}^{\infty} B_{n}$ is a finite set not containing the
invation of X_{0} and so $\exists \delta \in (0, \frac{1}{2})$
(so $V_{\delta}(x_{0}) \le V_{J_{2}}(x_{0})$) set $V_{\delta}(x_{0})$ is
disjoint from $\bigcup_{n=1}^{\infty} B_{n}$ so any possible
represented in the componical from as
 $\chi \triangleq \frac{m}{n}$ with some $n \ge N$
and here $f(x) = \frac{1}{n} \le \frac{1}{N} \le \frac{1}{N} + \frac{1}{N} + \frac{1}{N} = \frac{1}{N}$
 $f(x) - f(x_{0}) = 0 = 0 \forall invational x > 0$.