Chapter 5 Continuous Functions Let $f: A \rightarrow \mathbb{R}$ and $x_{o} \in A$ (unlike ni Ch. 4) We say that of is continuous (cts.) at xo if $\forall z>0\exists\delta>0$ sit. (x) $|f(x)-f(x)| < \epsilon$ $\forall x \in V_f(x_o) \cap A$. Two sperial cases Then of 15 always to at 26. (because $\exists \delta_{070} \text{ s.t. } V_{f_0}(x_0) \cap A = \text{sright} \quad \{x_0\} .$ (b) $x_0 \in A \cap A^c$. Then \int is its at $x_0 \sqrt[3]{\int \lim_{x \to x_0} f(x)} = \int_{x_0}^{x_0} f(x)$ $\begin{array}{ccccccccccccc}\nTh & I. & Lut & u_0 & \nA. & Fwf & A & \nabla & \n\end{array}$ (i) \uparrow i w w $+$ u (i) \forall ε $>$ 0 \exists δ $>$ \circ s . \vdash $(X*)$ $\mathcal{L}(A \cap V_{\delta}(x_{0})) \subseteq V_{\epsilon}(f(x_{0}))$

\n
$$
\int h \, 2 \int \mathcal{S} \text{e} \text{g} \text{n} \text{ and } \int \text{c} \text{d} \text{r} \text{ is in } \mathcal{S}
$$
\n

\n\n $\int h \, 2 \int \mathcal{S} \text{e} \text{d} \cdot \mathcal{S} + \mathcal{S} \text{sin} \cdot \mathcal{S} \text{ is in } \mathcal{S}$ \n

\n\n $\int h \, 2 \int \mathcal{S} \text{e} \text{d} \cdot \mathcal{S} + \mathcal{S} \text{sin} \cdot \mathcal{S} \text{ is in } \mathcal{S}$ \n

\n\n $\int h \, (1) \, 3 \int \text{sin} \cdot \frac{1}{2} \int h \, (1) \, 5 \int h \, (1) \,$

To do this, not:
$$
4n\pi r
$$

\n
$$
|\mathcal{G}(x) - \mathcal{F}(n_{0})| = |x - x_{0}| \cdot |x + x_{0}| \le |x - x_{0}| \cdot (|x - x_{0}| + z + z_{0})
$$
\n
$$
\le (1 + 2|x_{0}|) |x - x_{0}| \le \varepsilon \Leftrightarrow \text{rows with a short.}
$$
\nNot: **3 3 3 3 4 4 5 5 4 6 6 7 6 8 8 8 9 9 1**

1.8.
\n
$$
|N - A800| \le |X - A (2N - A000)| \le |X - A(2N - A000)|
$$
\nAnd
$$
N = |2N - N| \le |X - A| = 1
$$
\nwhich is not possible for a natural no. 1V.
\nSimilarly, one can show that w
\n
$$
(1) \qquad f(x) = \begin{cases} 1 & 1 \le x \le 0 \\ 0 & x = 0 \end{cases}
$$
\n
$$
I = \begin{cases} 1 & 1 \le x \le 0 \\ 0 & x = 0 \end{cases}
$$
\n
$$
I = \begin{cases} 1 & 1 \le x \le 0 \\ 0 & x = 0 \end{cases}
$$
\n
$$
I = \begin{cases} 1 & 1 \le x \le 0 \\ 0 & x \le 0 \end{cases}
$$
\n
$$
I = \begin{cases} 1 & 1 \le x \le 0 \\ 0 & x \le 0 \end{cases}
$$
\n
$$
I = \begin{cases} 1 & 1 \le x \le 0 \\ 0 & x \le 0 \end{cases}
$$
\n
$$
I = \begin{cases} 1 & 1 \le x \le 0 \\ 0 & x \le 0 \end{cases}
$$
\n
$$
I = \begin{cases} 1 & 1 \le x \le 0 \\ 0 & x \le 0 \end{cases}
$$
\n
$$
I = \begin{cases} 1 & 1 \le x \le 0 \\ 0 & x \le 0 \end{cases}
$$
\n
$$
I = \begin{cases} 1 & 1 \le x \le 0 \\ 0 & x \le 0 \end{cases}
$$
\n
$$
I = \begin{cases} 1 & 1 \le x \le 0 \\ 0 & x \le 0 \end{cases}
$$
\n
$$
I = \begin{cases} 1 & 1 \le x \le 0 \\ 0 & x \le 0 \end{cases}
$$
\n
$$
I = \begin{cases} 1 & 1 \le x \le 0 \\ 0 & x \le 0 \end{cases}
$$
\n
$$
I = \begin{cases} 1 & 1 \le x \le 0 \\ 0 & x \le 0 \end{cases}
$$
\n
$$
I = \begin{cases} 1 & 1 \le x \le 0 \\ 0 & x \le 0 \end{cases}
$$
\n
$$
I = \begin{cases} 1 & 1 \le x
$$

where
$$
B_{n} = \{x \in V_{j}(x_{0}), 0 \le x = \frac{m}{n} \text{ with } m \in N\}
$$

\nNote that $\{B_{n}, B_{n}\}$ is finite (as the set of all m-sphere)
\nis the order definition of B_{n} is a bounded solution of B_{n} . Therefore, A_{n}
\n $\{B_{n}\} = \{x \in N : 0 \text{ for } n \in N\}$
\n $\{B_{n}\} = \{x \in N : 0 \text{ for } n \in N\}$
\n $\{B_{n}\} = \{x \in N : 0 \text{ for } n \in N\}$
\n $\{B_{n}\} = \{x \in N : 0 \text{ for } n \in N\}$
\n $\{B_{n}\} = \{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0 \text{ for } n \in N\}$
\n $\{x \in N : 0$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$